jueves, 13 de diciembre de 2012

3.7 Curvatura

La medida en la cual se desvía un determinado objeto geométrico se conoce como curvatura. Existen básicamente dos tipos principales de curvatura: curvatura intrínseca y extrínseca. Para los objetos que se encuentran en un espacio diferente, en este tipo de enfoque que se relaciona con la curvatura del radio del círculo que traza el objeto correspondiente, se define una curvatura extrínseca. El círculo puede ser el ejemplo más sencillo de una curvatura extrínseca dado que encada punto de la circunferencia; la curvatura es igual al recíproco del radio. La curvatura intrínseca en la naturaleza es descrita por la variedad de Riemann en cada punto.

Una curvatura en un plano pertenece a una cantidad escalar, mientras que en 2D o 3D, la identidad de la curvatura es definida como un vector en el cual tanto la nitidez como la dirección de inclinación es considerada.

Curvatura de una Recta: Un círculo de radio l/ k es formado por la recta en caso que tenga la misma curvatura en todos sus puntos.En cada uno de los puntos la curvatura puede ser calculada como


Consideremos algunos de los casos de la siguiente fórmula:

En el caso que la curva y su correspondiente ecuación sean de la forma


Entonces en P la segunda derivada resultará ser positiva lo cual significa que la pendiente incrementará con el recorrido de la recta transversa.

En el caso que la curva y su correspondiente ecuación sean de la forma


Entonces en P la segunda derivada resultará ser negativa lo cual significa que la pendiente disminuirá con el recorrido de la recta transversa.

Y en el caso que la curva y su correspondiente ecuación sean de la forma


Este gráfico representa la curvatura cero. Este es el punto de inflexión de la pendiente.

Curvatura de la Superficie: La curvatura de una superficie puede ser negativa o positiva. Sin embargo, en el caso de una curvatura positiva se forma una superficie esférica. Hay ciertos casos relacionados con la curvatura de la superficie:

Si la superficie es plana, entoncesen cada punto de la superficie la curvatura resulta ser 0. Esta denota una esfera de diámetro infinito.


Al tomar parte de la esfera la cual a su vez toca el plano, con el cambio de giro de la curvatura hacia nosotros dentro de dos dimensiones, se obtiene una curvatura positiva.

De igual manera, al tomar la parte de la esfera en la cara opuesta del plano, con el cambio de giro de la curvatura hacia afuera dentro de dos dimensiones, se obtiene una curvatura negativa.

La curvatura también puede ser encontrada con la ayuda de la longitud de la cuerda así también como con la del arco. Para esto, considere dos puntos cualesquiera P y Q en la curva C y cuya longitud del arco sea s (P, Q) y la longitud del segmento de recta es d (P, Q). Entonces, en Pla curvatura de la curva C es dada por:


En lugar de s (P, Q) en el denominador, también se puede colocard (P, Q). Esta fórmula mantiene su importancia en cualquiera de las dimensiones. Una singularidad en el punto P también puede incluirse dentro de esta definición en el caso de que el límite se considere en ambos lados de forma independiente. 

3.6 Vector tangente, normal y binormal

La tangente de una curva es una recta que intersecta la curva en un solo punto. Es conocido por nosotros a través del cálculo que mediante la diferenciación de una función se obtiene el punto tangencial para la curva de esa función. Un concepto similar es aplicable al cálculo vectorial, junto con una excepción.

Para una función con un vector de la forma, (x), un vector de la forma es llamado vector tangente en el caso de que esta función sea real y su magnitud no sea igual a cero. En esta situación, la tangente de la función dada (x) en un punto arbitrario es paralela al vector tangente, en ese punto. Aquí, con el fin de tener un vector tangente, 0 es un pre-requisito esencial. Esto es debido a que un vector de magnitud cero no puede tener dirección.

De manera similar, un vector tangencial unitario es definido como,




Aquí s es la longitud total del arco dado, (t) es el vector posición de la función dada y t es la variable de parametrización.


En la figura anterior, X es un punto estático, mientras que P es un punto en movimiento. El punto P se mueve lentamente en la dirección del punto X, mientras el punto P se acerca al punto X, el vector desde el punto X hasta el punto P se acerca al vector tangente en el punto X. La recta que contiene el vector tangente se conoce como recta tangencial.

Un vector normal es algo similar a un vector unitario, suponga que para una función (x), (t) es el vector posición, entonces el vector normal para la función dada es definida como,


Aquí es el vector unitario de la función dada.


Como se describió en la figura anterior, un vector normal es un vector que está perpendicular a un plano o superficie dada. Un vector normal para una superficie dada en un punto arbitrario,sea (x, y), está dado por una matriz como la siguiente,


Aquí fx y fy son diferenciales parciales de la función dada con respecto a x e y.

De la misma forma, el vector normal a un plano es representado por una matriz como,


Donde la ecuación del plano es,

f(x, y, z) = ax + by + cz + d = 0

Un vector binormal es un producto cruz o producto vectorial del vector normal y del vector unitario normal. Suponga que para una función (x), (t) es el vector posición, entonces el vector binormal para la función dada se define como,


Como sabemos que tanto un vector unitario como un vector normal son vectores unitarios y que se encuentranperpendicular a la superficie dada, un vector Binormal es también un vector unitario que se encuentra normal a un plano o superficie dada. Este vector es normal a ambos, el vector unitario y el vector normal.


3.5 Longitud de arco

Una mejor técnica para definir una curva es describirla con una función vectorial de variables reales. Esta esuna estrategia alternativa para definir una curva y es mucho mejor aquella en la cual todos los puntos de la curva son vectores posición con puntos terminales. Debido a esto, la curva es descrita de forma compacta y el cálculo de distintas propiedades de la curva puede llevarse a cabo convenientemente.
Si hablamos de curvas, una propiedad importante que surge es la longitud del arco de la curva. Las funciones vectoriales de una variable también se definen paramétricamente; por tanto la definición de la longitud del arco es la misma que para otras curvas definidas paramétricamente. Para una función valorada vectorial “p”, en el intervalo cerrado [a, b] cuya definición está dada por la ecuación,


La primera derivada de la función será,


Tenemos la longitud del arco de la función como,


Aquí tenemos x = q(t), y = r(t) y z = s(t).

Sin embargo, tenemos,


Esto puede ser escrito como,


La ecuación anterior puede ser aproximadamediante la suma de Riemann para confirmar que es la longitud del arco de una función vectorial,


Aquí tenemos, ti = a + i t y, t = (b – a)/ n
Por lo tanto, se puede concluir que,


Esto implica que tenemos,


La ecuación anterior representa la longitud total de un polígono que tiene sus segmentos de recta entre los vértices p (ti), donde i = 0… n. por tanto, se puede concluir que el resultado obtenido es una solución casi perfecta.

La longitud del arco también está representada por la ecuación,


En la ecuación anterior s(t) representa la longitud de la curva desde p(a) hasta p(t). Usando el Teorema Fundamental del Cálculo, se puede establecer que,


Utilizar la longitud del arco como parámetro de una curva es algo muy inteligente de hacer porque la longitud del arco de una curva no depende de algún otro tipo de parámetro, lo que nos permite poder estudiar las otras propiedades de la curva de forma más conveniente.

Considere que t(s) es la función inversa representada por la ecuación anterior. En esta situación tenemos que, p2(s) = p (t(s))

será un parámetro de la curva de entrada en términos de la longitud del arco.

Al hacer uso de la regla de la cadena, podemos establecer que, p’2 (s) = dp(t(s))/ ds p2 (s) = p’(t(s))/ ds

Esto significa que, | p2 (s) | = | p’(t) |/ (ds/ dt)

Después de haber visto un montón de fórmulas,pasemos ahora a un ejemplo para entender mejor los conceptos aprendidos anteriormente.

Determine la longitud del arco de una hélice representada por la ecuación, p (t) = cos (t) + sin (t) + t 0 <= t <= 2 p’(t) = -sin (t) + cos (t) + | p’(t) | = = L = | p’(t) | dt = dt = 2



3.4 Integración de funciones vectoriales

Una función vectorial es una función definida en términos de la variable tiempo. El rango de esta función es multidimensional dado que la función está constituida por diversos componentes, donde cada uno de los componentes varía con respecto al tiempo en una de las direcciones. Por lo tanto, de manera informal una función vectorial puede denotarse como,


Aquí, cada una de las funciones individuales es una función vectorial de variable real en sí misma. Por lo tanto, el conjunto de funciones (p (t), q (t), r (t)) es una asignación de un intervalo cerrado en Rk, la cual es de rango dimensional k para la función dada. Las dimensiones de entrada y salida de una función vectorial son iguales, las cuales son un vector con alguna forma determinada.

La integración de la función se lleva a cabo mediante la integración de cada uno de los componentes individuales de la función. Por lo tanto la integración de la función vectorial se valora,


Aquí la integración se hace con respecto a ‘t’, la cual es la variable.

Asimismo la integración definida de la función también puede hacerse de la misma manera que una función ordinaria. Para quela integración definida sea llevada a cabo, los componentes completos de la función, y por lo tanto la función misma debe ser real en un intervalo cerrado [a, b]. Si el valor de ‘t’ está incrementandose monótonamente en el intervalo dado o podemos decir que, fi R(t) para i = 1 … k, entonces la integración definida de la función será,


El Teorema Fundamental del Cálculo también se ha modificado para una función valorada vectorial la cual establece que, sean F y f dos funciones diferentes que se trazan con el rango multidimensional Rk para un intervalo cerrado [a, b] también la derivada de F es equivalente a f, entonces


si, f R en [a, b].

Observemos ahora un ejemplo ilustrativo con el fin de tener una mejor comprensión acerca del tema. Calcule la función r(t), dada r’(t) = - y r(0) = + 2 .

Para determinar la función r(t) a partir de las ecuaciones anteriores tenemos que integrar ‘r(t). Pero antes vamos a escribir cada una de las dos funciones en sus formas vectoriales,

r’(t) = <1, −1, 0> r(0) = <0, 1, 2>

Ahora integremos r’(t) como,

r’(t) dt = dt - dt + dt r(t) = 

Ahora bien, si sustituimos estos valores en la ecuación 2, podemos obtener los valores reales de la constante de integración como,

r(0) = = <0, 1, 2> c1 = 0 c2 = 1 c3 = 2

Entonces la función r(t) se calcula como .

Por lo general, en el caso que la función vectorial esté en lugar de la constante de integración hacemos uso del vector integración, el cual es un vector arbitrario.

De manera similar, un campo vectorial completo también puede ser integrado lo cual nos ayuda a determinar la cantidad de trabajo realizado por el campo vectorial. Esto se hace tomando la integral de línea del campo vectorial dado. 

3.3 Derivación de funciones vectoriales y sus propiedades

El cálculo aplicado a las funciones Cartesianas puede ser extendido también para ser aplicable a las funciones vectoriales. Como ya sabemos una función vectorial, es en realidad, una función compuesta de varias funciones constituyentes. Cada una de estas funciones constituyentes es una función independiente que determina el efecto del cambio de variable en su dirección correspondiente, y el efecto general del cambio de variable puede ser conocido a través de la función compuesta, esta es la función vectorial.

Puesto que una función vectorial es una función compuesta, esta no puede ser diferenciada directamente, en lugar de diferenciarla, necesitamos diferenciar cada una de sus funciones constituyentes por separado. Las técnicas utilizadas para integrar una función Cartesiana se pueden aplicar para diferenciar una función vectorial debido a que las funciones constitutivas de la misma son funciones valoradas reales.

Asuma que es la función vectorial que será diferenciada para obtener dr/dt o . Aquí la diferenciación se lleva a cabo con respecto al tiempo ‘t’ porque una función valorada vectorial se define con respecto a la variable tiempo.Entonces la derivada de esta función se denota como,

lim = [ (t + h) - (t)]/ h

Los conceptos del cálculo Cartesiano son aplicables aquí también, lo que significa que esta derivada de la función vectorial representaría la tangente a la curva de la función dada en algún punto.

Hay ciertas cosas que deben tenerse en cuenta mientras se diferencia la función: 1. (t) es real en el tiempo t sólo existe una derivada de en ‘t’.

2. Para un intervalo abierto (a, b) si el valor de (t) existe en cada punto, entonces podemos decir que la función dada es diferenciable para ese intervalo.

Al considerar los límites de un lado esta diferenciación se puede extender también al intervalo cerrado.

Ahora diferenciemos una función valorada vectorial.

(t) = t cos (t), −2 sin (t)>
f(t) = t cos (t) g(t) = −2 sin (t) d(f(t))/ dt = cos (t) – t sin (t) d(g(t))/ dt = −2 cos (t) (t) = < cos (t) – t sin (t), −2 cos (t)

Existen ciertas propiedades de la derivada de una función vectorial. Algunas de ellas se analizan a continuación.

Asuma que que y y son dos funciones vectoriales cuya derivada se puede determinar en el instante de tiempo ‘t’. También que es una función valorada real que puede ser diferenciada en el instante de tiempo ‘t’, y que s es una cantidad escalar.Entonces,

1. La diferenciación del producto de una cantidad escalar con una función vectorial es producto de esa cantidad escalar con la derivada de la función vectorial.


2. La diferenciación de la suma de dos funciones vectoriales valor es igual a la suma de las derivadas de las dos funciones vectoriales.


Esta regla también es aplicable a la diferencia de dos funciones valoradas vectoriales.

3. La diferenciación del producto de una función vectorial y una función valorada real es igual a la suma del producto de la función real con la derivada de la función vectorial y la derivada de la función real con la función vectorial.